

PEDESTRIAN DYNAMICS AND BOTTLENECK FLOW

Jonas Rzezonka (IAS-7), Forschungszentrum Jülich and Universität zu Köln

DATUM

Source: Wikipedia.org

PHYSICS PERSPECTIVE

Self-organising phenomenon and collective effects

- Observe macroscopic effects that result from microscopic interaction
- Examples:
 - Lane formation in counterflow
 - Oscillation in counterflow at bottlenecks
 - Stop and go waves
 - Clogging and Jamming at Bottlenecks

BOTTLENECK SITUATION

- Process definition
 - Unidirectional movement of pedestrians passing a bottleneck
 - Incoming flow J_{in} vs. outgoing flow J_{out}
- Phenomena
 - $J_{in} > J_{out}$ leads to congestion
 - Density p increases till a threshold p* when the congestion area grows in the opposite direction
 - ► <u>Clogging</u>

CLOGGING IN GRANULAR MATTER AND ARCHITECTURE

Immortal Bridge near Mount Tai in China

Roman aqueduct near Tunis

(source <u>wikipedia.org</u>)

Illustration of clogging in granular matter

Mitglied der Helmholtz-Gemeinschaft

- Evacuation experiment through a bottleneck with sheep
- Narrow door leads to food source
- The sheep are highly motivated and show no cooperation
- Clogging occurs

MOTIVATION AND COOPERATION

Motivation influences the insensitive to cooperate

- Experiment of Mintz
 - Groups of 15-21 students
 - Task: Pull out cones dry
 - only one cone at the time without clogging
- Different setups and instructions
 - With and without reward (money)
 - With and without opportunity to discuss
 - With and without special arousal (swaring and noise)
- Without reward: No clogging
- With reward: clogging

Source: A. Mintz, *Non-adaptive group behaviour*, The Journal of abnormal and social psychology 46 150 (1951)

INFLUENCE OF MOTIVATION ON CLOGGING

Low motivation

Medium motivation

High motivation

Source: Garcimartín, Parisi, Pastor, Martín-Gómez, Zuriguel, *Flow of pedestrians through narrow doors with different competitiveness*, J. Stat. Mech, 043402, 2016

BOTTLENECK EXPERIMENT

Video: Experiments performed by Majid Sarvi, University of Melbourne, Australia, 2018

BOTTLENECK EXPERIMENT

- Evacuation of an aircraft
 - Competitive and non competitive situation (money as reward)
 - variable exit width W_c
 - $t_{comp} > t_{non-comp}$ if $w < w_c$
 - $t_{comp} < t_{non-comp}$ if $w > w_c$

Source: Muir et al., *Effects of Motivation and Cabin Configuration on Emergency Aircraft Evacuation Behavior and Rates of Egress*, The Int. J. of Aviation Psychology, 6, 1996

FLOOR FIELD MODEL

- Cellular automata model discrete in space and time with parallel dynamics
- Space is divided into cells which can only be occupied by a single agent
- At each time step an agent can transition to one of the neighbouring empty cells with a certain probability fixed by the floor field

FLOOR FIELD MODEL

- Example: An empty cell closer to the destination has a higher transition probability than one further away $p_{ij} \propto (1 n_{ij}) \exp(k_s S_{ij})$
- ► $n_{ij} \in 0,1$
 - I occupied, 0 unoccupied
- S_{ij} increases closer to destination
- k_s sensitivity parameter $[0,\infty)$

Universita

Floor field model with friction

Floor field model with friction

- Conflict resolution
 - No conflict: $p_{ij} \propto (1 n_{ij}) \exp(k_s S_{ij})$
 - \blacktriangleright Conflict: pedestrians can not move with probability μ
 - probability $1-\mu$ one of the pedestrians can move into the cell
 - pedestrian chosen randomly with equal probability

Universi

Floor field model with friction

- Conflict resolution
 - No conflict: $p_{ij} \propto (1 n_{ij}) \exp(k_s S_{ij})$
 - \blacktriangleright Conflict: pedestrians can not move with probability μ
 - probability $1-\mu$ one of the pedestrians can move into the cell
 - pedestrian chosen randomly with equal probability

Illustration of a floor field simulation

Source: C. Bursedde, K.Klauck, A. Schadschneider, J. Zittartz (2001), *Simulation of pedestrian dynamics using a two-dimensional cellular automaton*, Physica A 295 (2001) 507–525

Illustration of a floor field simulation

Source: C. Bursedde, K.Klauck, A. Schadschneider, J. Zittartz (2001), *Simulation of pedestrian dynamics using a two-dimensional cellular automaton*, Physica A 295 (2001) 507–525

Illustration of a floor field simulation

 $p_{ij} \propto (1 - n_{ij}) \exp(k_s S_{ij})$

 $\mu_{LC} < \mu_{HC}$ $k_{s,LC} < k_{s,HC}$

Illustration of a floor field simulation

Universität

zu Kölr

Forschungszentrum

SUMMARY

THANK YOU FOR LISTENING

